Search results
Results from the WOW.Com Content Network
Diastereomers differ from enantiomers in that the latter are pairs of stereoisomers that differ in all stereocenters and are therefore mirror images of one another. [3] Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding ...
Diastereomers are distinct molecular configurations that are a broader category. [3] They usually differ in physical characteristics as well as chemical properties. If two molecules with more than one chiral centre differ in one or more (but not all) centres, they are diastereomers. All stereoisomers that are not enantiomers are diastereomers.
Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.
A configurational stereoisomer is a stereoisomer of a reference molecule that has the opposite configuration at a stereocenter (e.g., R- vs S-or E- vs Z-). This means that configurational isomers can be interconverted only by breaking covalent bonds to the stereocenter, for example, by inverting the configurations of some or all of the ...
An example of modest stereoselectivity is the dehydrohalogenation of 2-iodobutane which yields 60% trans-2-butene and 20% cis-2-butene. [5] Since alkene geometric isomers are also classified as diastereomers, this reaction would also be called diastereoselective.
The two enantiomers have inverse effects on the rate of glucose metabolism in the frontal cortex. [22] Dihydroxy-3, 4 phenylalanine (Dopa): Dopa is a racemic mixture where one enantiomer, L-Dopa, is used as a treatment for Parkinson's Disease, and the other enantiomer, D-Dopa is considered to be toxic.
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
Chiral resolution, or enantiomeric resolution, [1] is a process in stereochemistry for the separation of racemic mixture into their enantiomers. [2] It is an important tool in the production of optically active compounds, including drugs. [3] Another term with the same meaning is optical resolution.