enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  3. Location parameter - Wikipedia

    en.wikipedia.org/wiki/Location_parameter

    In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter, which determines the "location" or shift of the distribution.In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Connectivity-based clustering, also known as hierarchical clustering, is based on the core idea of objects being more related to nearby objects than to objects farther away. These algorithms connect "objects" to form "clusters" based on their distance. A cluster can be described largely by the maximum distance needed to connect parts of the ...

  5. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.

  6. Distance sampling - Wikipedia

    en.wikipedia.org/wiki/Distance_sampling

    Objects are detected out to a pre-determined maximum detection distance w. Not all objects within w will be detected, but a fundamental assumption is that all objects at zero distance (i.e., on the line itself) are detected. Overall detection probability is thus expected to be 1 on the line, and to decrease with increasing distance from the line.

  7. Location test - Wikipedia

    en.wikipedia.org/wiki/Location_test

    A location test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other.

  8. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Given a set of n objects, centroid-based algorithms create k partitions based on a dissimilarity function, such that k≤n. A major problem in applying this type of algorithm is determining the appropriate number of clusters for unlabeled data. Therefore, most research in clustering analysis has been focused on the automation of the process.

  9. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.