Search results
Results from the WOW.Com Content Network
CUDA operates on a heterogeneous programming model which is used to run host device application programs. It has an execution model that is similar to OpenCL. In this model, we start executing an application on the host device which is usually a CPU core. The device is a throughput oriented device, i.e., a GPU core which performs parallel ...
In computing, CUDA (Compute Unified Device Architecture) is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
The control and status registers are often described by a register map. [1] Both CPUs and I/O devices have CSRs. Typical examples include RISC-V CPU which has a set of registers to handle interrupts, and UART which has a set of registers to handle data reception and transmission.
The context switch loads the process into the processor and changes the state to "running" while the previously "running" process is stored in a "waiting" state. If a process in the "running" state needs to wait for a resource (wait for user input or file to open, for example), it is assigned the "blocked" state.
The computations are offloaded to the GPUs through either the low-level or the high-level API introduced with CUDA. CUDA is only available for Nvidia's graphics products. Nvidia OptiX is part of Nvidia GameWorks. OptiX is a high-level, or "to-the-algorithm" API, meaning that it is designed to encapsulate the entire algorithm of which ray ...
At minimum, a testbench contains an instantiation of the model (called the device under test or DUT), pin/signal declarations for the model's I/O, and a clock waveform. The testbench code is event driven: the engineer writes HDL statements to implement the (testbench-generated) reset-signal, to model interface transactions (such as a host–bus ...
A modern x86 CPU may use more than 4 GB of memory, either utilizing the native 64-bit mode of x86-64 CPU, or the Physical Address Extension (PAE), a 36-bit addressing mode. In such a case, a device using DMA with a 32-bit address bus is unable to address memory above the 4 GB line.
The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards.DRM exposes an API that user-space programs can use to send commands and data to the GPU and perform operations such as configuring the mode setting of the display.