enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning processes can be divided into two types (pre- and post-pruning). Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce ...

  3. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    Multilevel regression with poststratification (MRP) is a statistical technique used for correcting model estimates for known differences between a sample population (the population of the data one has), and a target population (a population one wishes to estimate for).

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  6. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  7. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

  8. Recursive partitioning - Wikipedia

    en.wikipedia.org/wiki/Recursive_partitioning

    See decision tree. As compared to regression analysis, which creates a formula that health care providers can use to calculate the probability that a patient has a disease, recursive partition creates a rule such as 'If a patient has finding x, y, or z they probably have disease q'. A variation is 'Cox linear recursive partitioning'. [2]

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    As most tree based algorithms use linear splits, using an ensemble of a set of trees works better than using a single tree on data that has nonlinear properties (i.e. most real world distributions). Working well with non-linear data is a huge advantage because other data mining techniques such as single decision trees do not handle this as well.