enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific pump power - Wikipedia

    en.wikipedia.org/wiki/Specific_pump_power

    Specific Pump Power (SPP) is a metric in fluid dynamics that quantifies the energy-efficiency of pump systems. It is a measure of the electric power that is needed to operate a pump (or collection of pumps), relative to the volume flow rate. It is not constant for a given pump, but changes with both flow rate and pump pressure.

  3. Specific speed - Wikipedia

    en.wikipedia.org/wiki/Specific_speed

    The following equation gives a dimensionless specific speed: = / where: is specific speed (dimensionless) is pump rotational speed (rad/sec) is flowrate (m 3 /s) at the point of best efficiency is total head (m) per stage at the point of best efficiency. Note that the units used affect the specific speed value in the above equation and ...

  4. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    These equations govern the power, efficiencies and other factors that contribute to the design of turbomachines. With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1]

  5. Affinity laws - Wikipedia

    en.wikipedia.org/wiki/Affinity_laws

    The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler.

  7. Net positive suction head - Wikipedia

    en.wikipedia.org/wiki/Net_positive_suction_head

    If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.

  8. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse should not be confused with total thrust. Thrust is the force supplied by the engine and depends on the propellant mass flow through the engine. Specific impulse measures the thrust per propellant mass flow. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is ...

  9. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.