Search results
Results from the WOW.Com Content Network
An ionospheric model is a mathematical description of the ionosphere as a function of location, altitude, day of year, phase of the sunspot cycle and geomagnetic activity. Geophysically, the state of the ionospheric plasma may be described by four parameters: electron density, electron and ion temperature and, since several species of ions are ...
As with other ionospheric sectors, 'layer' implies a concentration of plasma, while 'region' is the volume that contains the said layer. The F region contains ionized gases at a height of around 150–800 km (100 to 500 miles) above sea level, placing it in the Earth's thermosphere , a hot region in the upper atmosphere , and also in the ...
The model can represent variation of these quantities with altitude, latitude, longitude, date, and time of day. It can also make use of solar, ionospheric and geomagnetic indices to refine the model. Vertical total electron content (TEC) may be derived. (A snapshot of model predictions is shown in the latitude vs. longitude map above). [6]
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
A static atmospheric model has a more limited domain, excluding time. A standard atmosphere is defined by the World Meteorological Organization as "a hypothetical vertical distribution of atmospheric temperature, pressure and density which, by international agreement, is roughly representative of year-round, midlatitude conditions."
The atmosphere has a mass of about 5.15 × 10 18 kg, [3] three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner with increasing altitude, with no definite boundary between the atmosphere and outer space.
In an isothermal model of the atmosphere, the density () varies exponentially with altitude according to the Barometric formula: = (),where denotes the density at sea level (=) and the so-called scale height.
The thermosphere (or the upper atmosphere) is the height region above 85 kilometres (53 mi), while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of 45 kilometres (28 mi) and causes the ozone layer.