Search results
Results from the WOW.Com Content Network
It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between point masses .
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s 2 or m·s −2) or equivalently in newtons per kilogram (N/kg or N·kg −1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2).
However, to distinguish acceleration relative to free fall from simple acceleration (rate of change of velocity), the unit g is often used. One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n ), defined as 9.806 65 metres per second squared , [ 5 ] or equivalently 9.806 65 newtons of ...
This is convenient because one pound mass exerts one pound force due to gravity. Note, however, unlike the other systems the force unit is not equal to the mass unit multiplied by the acceleration unit [11] —the use of Newton's second law, F = m ⋅ a, requires another factor, g c, usually taken to be 32.174049 (lb⋅ft)/(lbf⋅s 2).
Acceleration due to gravity, acceleration of gravity or gravitational acceleration may refer to: Gravitational acceleration , the acceleration caused by the gravitational attraction of massive bodies in general
Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...
The acceleration due to Earth's gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation. Standard gravity is 980.665 Gal. Mountains and masses of lesser density within the Earth's crust typically cause variations in gravitational acceleration of tens to