Search results
Results from the WOW.Com Content Network
In computing, decimal64 is a decimal floating-point computer number format that occupies 8 bytes (64 bits) in computer memory. It was formally introduced in the 2008 revision [1] of the IEEE 754 standard, which was taken over into the ISO/IEC/IEEE 60559:2011 [2] standard.
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]
This is a binary format that occupies at least 79 bits (80 if the hidden/implicit bit rule is not used) and its significand has a precision of at least 64 bits (about 19 decimal digits). The C99 and C11 standards of the C language family, in their annex F ("IEC 60559 floating-point arithmetic"), recommend such an extended format to be provided ...
[64] 62: Can be notated with the digits 0–9 and the cased letters A–Z and a–z of the English alphabet. 64: Tetrasexagesimal: I Ching in China. This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters ...
There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits). The binary32 and binary64 formats are the single and double formats of IEEE 754-1985 respectively.
With the 52 bits of the fraction (F) significand appearing in the memory format, the total precision is therefore 53 bits (approximately 16 decimal digits, 53 log 10 (2) ≈ 15.955). The bits are laid out as follows: The real value assumed by a given 64-bit double-precision datum with a given biased exponent and a 52-bit fraction is
where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form. The x must be lowercase in XML documents. The nnnn or hhhh may be any number of digits and may include leading zeros. The hhhh may mix uppercase and lowercase, though uppercase is the usual style.