Ad
related to: parts of graph labels
Search results
Results from the WOW.Com Content Network
In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.
A labeled graph is a graph whose vertices or edges have labels. The terms vertex-labeled or edge-labeled may be used to specify which objects of a graph have labels. Graph labeling refers to several different problems of assigning labels to graphs subject to certain constraints. See also graph coloring, in which the labels are interpreted as ...
A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". [1] A chart can represent tabular numeric data, functions or some kinds of quality structure and provides different info.
A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [5] a directed graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Given a graph G, we denote the set of its edges by E(G) and that of its vertices by V(G). Let q be the cardinality of E(G) and p be that of V(G). Once a labeling of the edges is given, a vertex of the graph is labeled by the sum of the labels of the edges incident to it, modulo p. Or, in symbols, the induced labeling on a vertex is given by
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring .
The vertices may be part of the graph structure, or may be external entities represented by integer indices or references. A graph data structure may also associate to each edge some edge value, such as a symbolic label or a numeric attribute (cost, capacity, length, etc.).
Ad
related to: parts of graph labels