Search results
Results from the WOW.Com Content Network
For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with ...
diplontic life cycle — the diploid stage is multicellular and haploid gametes are formed, meiosis is "gametic". haplodiplontic life cycle (also referred to as diplohaplontic, diplobiontic, or dibiontic life cycle) — multicellular diploid and haploid stages occur, meiosis is "sporic". The cycles differ in when mitosis (growth) occurs.
A comparison of sexual reproduction in predominantly haploid organisms and predominantly diploid organisms. 1) A haploid organism is on the left and a diploid organism is on the right. 2 and 3) Haploid egg and sperm carrying the dominant purple gene and the recessive blue gene, respectively. These gametes are produced by simple mitosis of cells ...
Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of ...
It is the stage of the life cycle when a cell gives rise to haploid cells each having half as many chromosomes as the parental cell. Two such haploid gametes, ordinarily arising from different individual organisms, fuse by the process of fertilization, thus completing the sexual cycle. Meiosis is ubiquitous among eukaryotes.
Animals have life cycles with a single diploid multicellular phase that produces haploid gametes directly by meiosis. Male gametes are called sperm, and female gametes are called eggs or ova. In animals, fertilization of the ovum by a sperm results in the formation of a diploid zygote that develops by repeated mitotic divisions into a diploid ...
A meiocyte is a type of cell that differentiates into a gamete through the process of meiosis. Through meiosis, the diploid meiocyte divides into four genetically different haploid gametes. [1] [2] The control of the meiocyte through the meiotic cell cycle varies between different groups of organisms.
The situation is quite different from that in animals, where the fundamental process is that a multicellular diploid (2n) individual directly produces haploid (n) gametes by meiosis. In animals, spores (i.e. haploid cells which are able to undergo mitosis) are not produced, so there is no asexual multicellular generation.