Search results
Results from the WOW.Com Content Network
A portion of the vector field (sin y, sin x) In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.
Calculus. In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. [1]
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability ...
A representation of a three-dimensional Cartesian coordinate system. In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the ...
Formal definition. The exterior algebra of a vector space over a field is defined as the quotient algebra of the tensor algebra by the two-sided ideal generated by all elements of the form such that . [6] Symbolically, The exterior product of two elements of is defined by.
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where. ρ is the length of the vector projected onto the xy -plane, φ is the angle between the projection of the vector onto the xy -plane (i.e. ρ) and the positive x -axis (0 ≤ φ < 2 π), z is the regular z -coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y ...