Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship a + b / a = a / b = φ.
[3] [6] John F. Pile, interior design professor and historian, has claimed that Egyptian architects sought the golden proportions without mathematical techniques and that it is common to see the 1.618:1 ratio, along with many other simpler geometrical concepts, in their architectural details, art, and everyday objects found in tombs. In his ...
Coxeter posed Odom's construction in the form of a problem, that was published 1983 in the American Mathematical Monthly as problem #E3007: [2] [3] Let A and B be midpoints of the sides EF and ED of an equilateral triangle DEF. Extend AB to meet the circumcircle (of DEF) at C. Show that B divides AC according to the golden section [3]
In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x 3 = x 2 + 1. The name supergolden ratio results from analogy with the golden ratio, the positive solution of the equation x 2 = x + 1. A triangle with side lengths ψ, 1, and 1 ∕ ψ has an angle of exactly ...
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± 1 / φ ) and cyclic permutations of these coordinates.