Search results
Results from the WOW.Com Content Network
The three vectors spanning a parallelepiped have triple product equal to its volume. (However, beware that the direction of the arrows in this diagram are incorrect.) In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented ...
The scalar triple product of three vectors is defined as = = (). Its value is the determinant of the matrix whose columns are the Cartesian coordinates of the three vectors. It is the signed volume of the parallelepiped defined by the three vectors, and is isomorphic to the three-dimensional special case of the exterior product of three vectors.
This article uses the convention that vectors are denoted in a bold font (e.g. a 1), and scalars are written in normal font (e.g. a 1). The dot product of vectors a and b is written as a ⋅ b {\displaystyle \mathbf {a} \cdot \mathbf {b} } , the norm of a is written ‖ a ‖, the angle between a and b is denoted θ .
Because the angle of the equilibrant force is opposite of the resultant force, if 180 degrees are added or subtracted to the resultant force's angle, the equilibrant force's angle will be known. Multiplying the resultant force vector by a -1 will give the correct equilibrant force vector: <-10, -8>N x (-1) = <10, 8>N = C.
Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1. In ...
The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle between the two vectors.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Important theorems of screw theory include: the transfer principle proves that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws; [1] Chasles' theorem proves that any change between two rigid object poses can be performed by a single screw; Poinsot's theorem ...