enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as =, where G is the gravitational constant, M is the object mass, and c is the speed of light.

  3. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    For example, the Schwarzschild radius of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s r {\textstyle {\frac {r_{\text{s}}}{r}}} is roughly 4 ...

  4. Template:Planetary radius - Wikipedia

    en.wikipedia.org/wiki/Template:Planetary_radius

    Some planets might have a radius that would be hard to compare to Jupiter. So the option to compare the planet to Earth is possible. {{ Planetary radius | base = <!--base planet (between Jupiter and Earth [Jupiter automatic])--> | radius = <!--simplified number of the radius (Jupiter or Earth equals 100px)--> }}

  5. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    In the Schwarzschild metric, free-falling objects can be in circular orbits if the orbital radius is larger than (the radius of the photon sphere). The formula for a clock at rest is given above; the formula below gives the general relativistic time dilation for a clock in a circular orbit: [11] [12]

  6. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, ... is the standard Riemannian metric on the unit radius 2-sphere.

  7. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.

  8. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    is the definition of the Schwarzschild radius for an object of mass , so the Schwarzschild metric may be rewritten in the alternative form: d s 2 = ( 1 − r s r ) − 1 d r 2 + r 2 ( d θ 2 + sin 2 ⁡ θ d ϕ 2 ) − c 2 ( 1 − r s r ) d t 2 {\displaystyle ds^{2}=\left(1-{\frac {r_{s}}{r}}\right)^{-1}dr^{2}+r^{2}(d\theta ^{2}+\sin ^{2}\theta ...

  9. Jupiter radius - Wikipedia

    en.wikipedia.org/wiki/Jupiter_radius

    The Jupiter radius or Jovian radius (R J or R Jup) has a value of 71,492 km (44,423 mi), or 11.2 Earth radii (R 🜨) [2] (one Earth radius equals 0.08921 R J). The Jupiter radius is a unit of length used in astronomy to describe the radii of gas giants and some exoplanets. It is also used in describing brown dwarfs.