enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  4. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  5. Rings of Jupiter - Wikipedia

    en.wikipedia.org/wiki/Rings_of_Jupiter

    The rings of Jupiter are a system of faint planetary rings. The Jovian rings were the third ring system to be discovered in the Solar System, after those of Saturn and Uranus . The main ring was discovered in 1979 by the Voyager 1 space probe [ 1 ] and the system was more thoroughly investigated in the 1990s by the Galileo orbiter. [ 2 ]

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  7. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.

  8. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius R of the gravitating body, there is no problem as long as R > r s. For ordinary stars and planets this is always the case. For example, the radius of the Sun is approximately 700 000 km, while its Schwarzschild radius is only 3 km.

  9. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    For example, the Schwarzschild radius of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s r {\textstyle {\frac {r_{\text{s}}}{r}}} is roughly 4 ...