Search results
Results from the WOW.Com Content Network
Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, [1] is the change in the frequency of an existing gene variant in a population due to random chance. [ 2 ] Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation . [ 3 ]
Genetic variation within a species could range from beneficial to detrimental. Nevertheless, in a smaller sized gene pool, there is a higher chance of a stochastic event in which deleterious alleles become fixed (genetic drift). While evolutionary theory states that expressed deleterious alleles should be purged through natural selection ...
Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic ) population, allele frequencies are expected to be roughly similar between groups.
The drift-barrier hypothesis is an evolutionary hypothesis formulated by Michael Lynch in 2010. [1] It suggests that the perfection of the performance of a trait, in a specific environment, by natural selection will hit a hypothetical barrier.
Genetic variation is the difference in DNA among individuals [1] or the differences between populations among the same species. [2] The multiple sources of genetic variation include mutation and genetic recombination. [3] Mutations are the ultimate sources of genetic variation, but other mechanisms, such as genetic drift, contribute to it, as ...
Early observations that indicated higher than expected heterozygosity and overall variation within the protein isoforms studied, drove arguments as to the role of selection in maintaining this variation versus the existence of variation through the effects of neutral mutations arising and their random distribution due to genetic drift.
The level of gene flow among populations can be estimated by observing the dispersal of individuals and recording their reproductive success. [4] [11] This direct method is only suitable for some types of organisms, more often indirect methods are used that infer gene flow by comparing allele frequencies among population samples.
Genetic divergence will always accompany reproductive isolation, either due to novel adaptations via selection and/or due to genetic drift, and is the principal mechanism underlying speciation. On a molecular genetics level, genetic divergence is due to changes in a small number of genes in a species, resulting in speciation . [ 2 ]