Ad
related to: quadrature of parabolic segment examples geometry questions
Search results
Results from the WOW.Com Content Network
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
The quadrature of the circle with compass and straightedge was proved in the 19th century to be impossible. [1] [2] Nevertheless, for some figures a quadrature can be performed. The quadratures of the surface of a sphere and a parabola segment discovered by Archimedes became the highest achievement of analysis in antiquity.
The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.
The development of analytical geometry and rigorous integral calculus in the 17th-19th centuries subsumed the method of exhaustion so that it is no longer explicitly used to solve problems. An important alternative approach was Cavalieri's principle , also termed the method of indivisibles which eventually evolved into the infinitesimal ...
The area of the triangle ABC is exactly three times the area bounded by the parabola and the secant line AB. Proof: [1]: 15–18 Let D be the midpoint of AC. Construct a line segment JB through D, where the distance from J to D is equal to the distance from B to D. We will think of the segment JB as a "lever" with D as its fulcrum. [3]
Nevertheless, for some figures (for example the Lune of Hippocrates) a quadrature can be performed. The quadratures of a sphere surface and a parabola segment done by Archimedes became the highest achievement of the antique analysis. The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere.
For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...
A proof that the area of the parabolic segment in the upper figure is equal to 4/3 that of the inscribed triangle in the lower figure from Quadrature of the Parabola. In Quadrature of the Parabola, Archimedes proved that the area enclosed by a parabola and a straight line is 4 / 3 times the area of a corresponding inscribed triangle as ...
Ad
related to: quadrature of parabolic segment examples geometry questions