enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  3. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W.If 0 W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0 W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0 W.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...

  5. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  6. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    The estimator of the vector-valued regularization framework can also be derived from a Bayesian viewpoint using Gaussian process methods in the case of a finite dimensional Reproducing kernel Hilbert space. The derivation is similar to the scalar-valued case Bayesian interpretation of regularization.

  7. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In a reflexive space the left and right radicals agree and are termed the kernel or the radical of the bilinear form: the subspace of all vectors orthogonal with every other vector. A vector v, with matrix representation x, is in the radical of a bilinear form with matrix representation A, if and only if Ax = 0 ⇔ x T A = 0.

  8. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...

  9. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...