enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.

  4. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  5. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.

  6. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    A nonnegative-valued kernel is said to be infinitely divisible if for every there exists a positive-definite kernel such that = (). Another link is that a p.d. kernel induces a pseudometric , where the first constraint on the distance function is loosened to allow d ( x , y ) = 0 {\displaystyle d(x,y)=0} for x ≠ y {\displaystyle x\neq y} .

  7. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    In machine learning, kernel functions are often represented as Gram matrices. [2] (Also see kernel PCA) Since the Gram matrix over the reals is a symmetric matrix, it is diagonalizable and its eigenvalues are non-negative. The diagonalization of the Gram matrix is the singular value decomposition.

  9. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).