enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).

  3. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.

  4. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922. It was not explicitly shown that these solutions were simply coordinate transformations of the usual Schwarzschild solution until 1933 in Lemaître's paper, [3] although Einstein immediately believed that to be true.

  5. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Schwarzschild's equation alone says nothing about how much warming would be required to restore balance. When meteorologists and climate scientists refer to "radiative transfer calculations" or "radiative transfer equations" (RTE), the phenomena of emission and absorption are handled by numerical integration of Schwarzschild's equation over a ...

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    No exact solutions of the Kepler problem have been found, but an approximate solution has: the Schwarzschild solution. This solution pertains when the mass M of one body is overwhelmingly greater than the mass m of the other. If so, the larger mass may be taken as stationary and the sole contributor to the gravitational field.

  7. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.

  8. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    See Deriving the Schwarzschild solution for a more detailed derivation of this expression. Depending on context, it may be appropriate to regard a and b as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation). Alternatively, we can plug in ...

  9. Isotropic coordinates - Wikipedia

    en.wikipedia.org/wiki/Isotropic_coordinates

    In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ⁡ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).