Search results
Results from the WOW.Com Content Network
The Ostwald law of dilution provides a satisfactory description of the concentration dependence of the conductivity of weak electrolytes like CH 3 COOH and NH 4 OH. [3] [4] The variation of molar conductivity is essentially due to the incomplete dissociation of weak electrolytes into ions.
The dilution in welding terms is defined as the weight of the base metal melted divided by the total weight of the weld metal. For example, if we have a dilution of 0.40, the fraction of the weld metal that came from the consumable electrode is 0.60.
ν i is the number of ions i in the formula unit of the electrolyte (e.g. 2 and 1 for Na + and SO 2− 4 in Na 2 SO 4). Kohlrausch's evidence for this law was that the limiting molar conductivities of two electrolytes with two different cations and a common anion differ by an amount which is independent of the nature of the anion.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Na + 5.011 La 3+ 20.88 Br −: 7.84 HC 2 O ... an explicit expression for the conductivity as a function of concentration c, known as Ostwald's dilution law, can be ...
Law of dilution; Law of multiple proportions; LEXO; Libration (molecule) Liesegang rings; Lifshitz theory of van der Waals force; Linear combination of atomic orbitals; Liquid junction interface; Liquid junction potential; Liquidus and solidus; List of character tables for chemically important 3D point groups; List of equations in fluid mechanics
For some users, the following may create a greater ammount of understanding/clarity, in addition to just having a formula. For any weak electrolyte, Ostwald's dilution law states that the degree of dissociation is inversely proportional to square root of the molar concentration and is directly proportional to the square root of the volume containing one mole of electrolyte.
Coulomb's law: Physics: Charles Augustin de Coulomb: Law of Charles and Gay-Lussac (frequently called Charles's law) Thermodynamics: Jacques Charles and Joseph Louis Gay-Lussac: Clifford's theorem Clifford's circle theorems: Algebraic geometry, Geometry: William Kingdon Clifford: Curie's law: Physics: Pierre Curie: Curie–Weiss law: Physics ...