Search results
Results from the WOW.Com Content Network
Unlike that in nerve cells, the cardiac action potential duration is closer to 100 ms (with variations depending on cell type, autonomic tone, etc.). After an action potential initiates, the cardiac cell is unable to initiate another action potential for some duration of time (which is slightly shorter than the "true" action potential duration).
The neurotransmitters that are released from the axon continue on to stimulate other cells such as other neurons or muscle cells. After an action potential travels down the axon of a neuron, the resting membrane potential of the axon must be restored before another action potential can travel the axon. This is known as the recovery period of ...
A labeled diagram of an action potential.As seen above, repolarization takes place just after the peak of the action potential, when K + ions rush out of the cell.. In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value.
Within the muscle tissue of animals and humans, contraction and relaxation of the muscle cells is a highly regulated and rhythmic process.In cardiomyocytes, or cardiac muscle cells, muscular contraction takes place due to movement at a structure referred to as the diad, sometimes spelled "dyad."
The sliding filament theory explains the mechanism of muscle contraction based on muscle proteins that slide past each other to generate movement. [1] According to the sliding filament theory, the myosin ( thick filaments ) of muscle fibers slide past the actin ( thin filaments ) during muscle contraction, while the two groups of filaments ...
In other words, your body burns a lot of calories to keep muscle around, so if you’re not actively using it, your body will let it go to conserve energy for more essential functions.
Cell division. All cells can be considered motile for having the ability to divide into two new daughter cells. [1] Motility is the ability of an organism to move independently using metabolic energy. This biological concept encompasses movement at various levels, from whole organisms to cells and subcellular components.
According to Kukushkin, the memories stored in non-brain cells in other parts of the body are memories strictly related to the roles that those specific cells play in human health. Thus, he detailed: