enow.com Web Search

  1. Ads

    related to: sulfur reducing bacteria in water cycle

Search results

  1. Results from the WOW.Com Content Network
  2. Sulfur-reducing bacteria - Wikipedia

    en.wikipedia.org/wiki/Sulfur-reducing_bacteria

    Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. [6] Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its ...

  3. Thermodesulfobacteriota - Wikipedia

    en.wikipedia.org/wiki/Thermodesulfobacteriota

    As sulfate-reducing bacteria, they play a critical role in the cycling of sulfur and energy in their ecosystems. Understanding their biology, ecology, and potential applications can provide insight into their importance in environmental processes and biotechnological innovations.

  4. Winogradsky column - Wikipedia

    en.wikipedia.org/wiki/Winogradsky_column

    This picture depicts the initial appearance of three different Winogradsky columns. They are soil and water samples from a river, the later two columns have been modified with phosphate, nitrate, sulfur and oxygen additives. These additions promote the growth of various bacteria specific to the anaerobic and aerobic regions of the column.

  5. Sulfate-reducing microorganism - Wikipedia

    en.wikipedia.org/wiki/Sulfate-reducing_microorganism

    Desulfovibrio vulgaris is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5 micrometre long.. Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO 2−

  6. Microbial oxidation of sulfur - Wikipedia

    en.wikipedia.org/wiki/Microbial_oxidation_of_sulfur

    The oxidation of reduced sulfur compounds is performed exclusively by Bacteria and Archaea.All the Archaea involved in this process are aerobic and belong to the Order Sulfolobales, [19] [20] characterized by acidophiles (extremophiles that require low pHs to grow) and thermophiles (extremophiles that require high temperatures to grow).

  7. Purple sulfur bacteria - Wikipedia

    en.wikipedia.org/wiki/Purple_sulfur_bacteria

    [5] [6] Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide, or thiosulfate (as well, some species can use H 2, Fe 2+, or NO 2 −) as the electron donor in their photosynthetic pathways. [5]

  8. Desulfobacterales - Wikipedia

    en.wikipedia.org/wiki/Desulfobacterales

    Desulfobacterales are an order of sulfate-reducing bacteria within the phylum Thermodesulfobacteria. [1] The order contains three families; Desulfobacteraceae, Desulfobulbaceae, and Nitrospinaceae. [2] The bacterium in this order are strict anaerobic respirators, using sulfate or nitrate as the terminal electron acceptor instead of oxygen.

  9. Sulfur metabolism - Wikipedia

    en.wikipedia.org/wiki/Sulfur_metabolism

    Sulfur reduction occurs in plants, fungi, and many bacteria. [10] Sulfate can serve as an electron acceptor in anaerobic respiration and can also be reduced for the formation of organic compounds. Sulfate-reducing bacteria reduce sulfate and other oxidized sulfur compounds, such as sulfite, thiosulfate, and elemental sulfur, to sulfide.

  1. Ads

    related to: sulfur reducing bacteria in water cycle