Search results
Results from the WOW.Com Content Network
The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e.
The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.
The value for elementary charge, when expressed in SI units, is exactly 1.602 176 634 × 10 −19 C. [1] After discovering the quantized character of charge, in 1891, George Stoney proposed the unit 'electron' for this fundamental unit of electrical charge. J. J. Thomson subsequently discovered the particle that we now call the electron in 1897.
Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1] [2] It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second. It is used to define the elementary charge e. [2] [1]
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and
This charge is sometimes called the Noether charge. Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current. In the case of local, dynamical symmetries, associated with every charge is a gauge field; when quantized, the gauge field becomes a gauge boson. The ...