enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polysaccharide - Wikipedia

    en.wikipedia.org/wiki/Polysaccharide

    Starch (a polymer of glucose) is used as a storage polysaccharide in plants, being found in the form of both amylose and the branched amylopectin. In animals, the structurally similar glucose polymer is the more densely branched glycogen, sometimes called "animal starch". Glycogen's properties allow it to be metabolized more quickly, which ...

  3. Glucan - Wikipedia

    en.wikipedia.org/wiki/Glucan

    The first representatives of main chain unhydrolysable linear polymers made up of levoglucosan units were synthesized in 1985 by anionic polymerization of 2,3-epoxy derivatives of levoglucosan (1,6;2,3-dianhydro-4-O-alkyl-β-D-mannopyranoses). [3] 2,3-Polymer. A wide range of unique monomers with different radical R can be synthesized. [4]

  4. Glycogen - Wikipedia

    en.wikipedia.org/wiki/Glycogen

    Glycogen is a branched biopolymer consisting of linear chains of glucose residues with an average chain length of approximately 8–12 glucose units and 2,000-60,000 residues per one molecule of glycogen. [20] [21] Like amylopectin, glucose units are linked together linearly by α(1→4) glycosidic bonds from one glucose to the next. Branches ...

  5. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose is a building block of many carbohydrates and can be split off from them using certain enzymes. Glucosidases, a subgroup of the glycosidases, first catalyze the hydrolysis of long-chain glucose-containing polysaccharides, removing terminal glucose. In turn, disaccharides are mostly degraded by specific glycosidases to glucose.

  6. Amylopectin - Wikipedia

    en.wikipedia.org/wiki/Amylopectin

    Amylopectin is divided into A and B helical chains of α-glucose. A chains are chains that carry no other chains, resulting in an eventual terminus, whereas B chains are chains that do carry other chains, perpetuating the amylopectin polymer. The ratio between these is usually between 0.8 to 1.4.

  7. Amylose - Wikipedia

    en.wikipedia.org/wiki/Amylose

    Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]

  8. Chitin - Wikipedia

    en.wikipedia.org/wiki/Chitin

    Chitin (C 8 H 13 O 5 N) n (/ ˈ k aɪ t ɪ n / KY-tin) is a long-chain polymer of N-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chitin are produced each year in the biosphere. [1]

  9. Dextran - Wikipedia

    en.wikipedia.org/wiki/Dextran

    Dextran chains are of varying lengths (from 3 to 2000 kilodaltons). The polymer main chain consists of α-1,6 glycosidic linkages between glucose monomers, with branches from α-1,3 linkages. This characteristic branching distinguishes a dextran from a dextrin, which is a straight chain glucose polymer tethered by α-1,4 or α-1,6 linkages. [2]