Search results
Results from the WOW.Com Content Network
(The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]
The relations between the primed and unprimed spacetime coordinates are the Lorentz transformations, each coordinate in one frame is a linear function of all the coordinates in the other frame, and the inverse functions are the inverse transformation. Depending on how the frames move relative to each other, and how they are oriented in space ...
that carry both the indices (x, α) operated on by Lorentz transformations and the indices (p, σ) operated on by Poincaré transformations. This may be called the Lorentz–Poincaré connection. [25] To exhibit the connection, subject both sides of equation to a Lorentz transformation resulting in for e.g. u,
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The transformations of these functions in spacetime are given below. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [8] [9]
Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψ j σ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] () where D(Λ) is some finite-dimensional representation, i.e. a matrix.
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos.It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
This notation is related to the notation O + (1, 3) for the orthochronous Lorentz group, where the + refers to preserving the orientation on the first (temporal) dimension. The group O( p , q ) is also not compact , but contains the compact subgroups O( p ) and O( q ) acting on the subspaces on which the form is definite.