Search results
Results from the WOW.Com Content Network
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Engineering thermodynamics"
(Note: that as given by P.K.Nag, an alternative name for 'useful energy' is 'availability' or exergy, and an alternative name for 'non-useful energy' is 'unavailability', or anergy (Nag 1984, p. 156)). But as E.Sciubba and S.Ulgiati observed, the notion of transformity meant to capture the emergy invested per unit product, or useful output.
Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...
Thermodynamic diagrams usually show a net of five different lines: isobars = lines of constant pressure; isotherms = lines of constant temperature; dry adiabats = lines of constant potential temperature representing the temperature of a rising parcel of dry air
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy.Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.