Search results
Results from the WOW.Com Content Network
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field and plays a key role in the theory of central simple algebras. Definition [ edit ]
Equivalently, K is a cyclic cubic field if it is a Galois extension of Q, in which case its Galois group over Q is cyclic of order three. This can only happen if K is totally real. It is a rare occurrence in the sense that if the set of cubic fields is ordered by discriminant , then the proportion of cubic fields which are cyclic approaches ...
A cyclic group, C n is the group of rotations of a regular n-gon, that is, n elements equally spaced around a circle. This group has φ(d ) elements of order d for each divisor d of n, where φ(d ) is the Euler φ-function, giving the number of natural numbers less than d which are relatively prime to d.
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...