Search results
Results from the WOW.Com Content Network
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture.Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [1] [2] and is thus expressed in terms of energy per unit area.
The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ...
For the situation where the plate is large compared to the size of the crack and the location of the force is relatively close to the crack, i.e., , , , , the plate can be considered infinite. In that case, for the stress intensity factors for F x {\displaystyle F_{x}} at crack tip B ( x = a {\displaystyle x=a} ) are [ 11 ] [ 12 ]
Fracture toughness varies by approximately 4 orders of magnitude across materials. Metals hold the highest values of fracture toughness. Cracks cannot easily propagate in tough materials, making metals highly resistant to cracking under stress and gives their stress–strain curve a large zone of plastic flow.
In a 1961 paper, P. C. Paris introduced the idea that the rate of crack growth may depend on the stress intensity factor. [4] Then in their 1963 paper, Paris and Erdogan indirectly suggested the equation with the aside remark "The authors are hesitant but cannot resist the temptation to draw the straight line slope 1/4 through the data" after reviewing data on a log-log plot of crack growth ...
Rainflow counting identifies the closed cycles in a stress-strain curve. The rainflow-counting algorithm is used in calculating the fatigue life of a component in order to convert a loading sequence of varying stress into a set of constant amplitude stress reversals with equivalent fatigue damage.