Search results
Results from the WOW.Com Content Network
In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:
In complex analysis, it is natural to define differentiation via holomorphic functions, which have a number of useful properties, such as repeated differentiability, expressibility as power series, and satisfying the Cauchy integral formula. In real analysis, it is usually more natural to consider differentiable, smooth, or harmonic functions ...
The following notation will be used throughout this article: is a fixed positive integer and is a fixed non-empty open subset of Euclidean space. = {,,, …} denotes the natural numbers.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The notation is also used to denote the characteristic function in convex analysis, which is defined as if using the reciprocal of the standard definition of the indicator function. A related concept in statistics is that of a dummy variable .
The converse is not true for real functions; in fact, in a certain sense, the real analytic functions are sparse compared to all real infinitely differentiable functions. For the complex numbers, the converse does hold, and in fact any function differentiable once on an open set is analytic on that set (see "analyticity and differentiability ...
In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when