enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,

  3. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Convergence can be defined in terms of sequences in first-countable spaces. Nets are a generalization of sequences that are useful in spaces which are not first countable. Filters further generalize the concept of convergence. In metric spaces, one can define Cauchy sequences. Cauchy nets and filters are generalizations to uniform spaces.

  4. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    It is a basic result that the sum of finitely many numbers does not depend on the order in which they are added. For example, 2 + 6 + 7 = 7 + 2 + 6.The observation that the sum of an infinite sequence of numbers can depend on the ordering of the summands is commonly attributed to Augustin-Louis Cauchy in 1833. [3]

  5. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    Here, one can see that the sequence is converging to the limit 0 as n increases. In the real numbers , a number L {\displaystyle L} is the limit of the sequence ( x n ) {\displaystyle (x_{n})} , if the numbers in the sequence become closer and closer to L {\displaystyle L} , and not to any other number.

  6. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  7. Unconditional convergence - Wikipedia

    en.wikipedia.org/wiki/Unconditional_convergence

    Unconditional convergence is often defined in an equivalent way: A series is unconditionally convergent if for every sequence () =, with {, +}, the series = converges.. If is a Banach space, every absolutely convergent series is unconditionally convergent, but the converse implication does not hold in general.

  8. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.

  9. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 ≤ a i , 1 ≤ a i , 2 ≤ ⋯ {\displaystyle 0\leq a_{i,1}\leq a_{i,2}\leq \cdots } , it says that taking the sum and the supremum can be interchanged.