Search results
Results from the WOW.Com Content Network
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
It is generally used in solving non-linear equations like Euler's equations in computational fluid dynamics. Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To ...
aaa is a one- to three-letter code describing the actual algorithm implemented in the subroutine, e.g. SV denotes a subroutine to solve linear system, while R denotes a rank-1 update. For example, the subroutine to solve a linear system with a general (non-structured) matrix using real double-precision arithmetic is called DGESV. [2]: "
Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.
To solve a linear system Ax = b with a preconditioner K = K 1 K 2 ≈ A, preconditioned BiCGSTAB starts with an initial guess x 0 and proceeds as follows: r 0 = b − Ax 0 Choose an arbitrary vector r̂ 0 such that ( r̂ 0 , r 0 ) ≠ 0 , e.g., r̂ 0 = r 0
UMFPACK (/ ˈ ʌ m f p æ k /) is a set of routines for solving unsymmetric sparse linear systems of the form Ax=b, using the Unsymmetric MultiFrontal method (Matrix A is not required to be symmetric). Written in ANSI/ISO C and interfaces with
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.