Search results
Results from the WOW.Com Content Network
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.
In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat ...
The author then explains how heat is defined or measured by calorimetry, in terms of heat capacity, specific heat capacity, molar heat capacity, and temperature. [ 42 ] A respected text disregards the Carathéodory's exclusion of mention of heat from the statement of the first law for closed systems, and admits heat calorimetrically defined ...
After the experiments, Thompson was surprised to observe that a vacuum was a significantly poorer heat conductor than air "which of itself is reckoned among the worst", [55] but only a very small difference between common air and rarefied air. [56] He also noted the great difference between dry air and moist air, [57] and the great benefit this ...
A collaboration between Nicolas Clément and Sadi Carnot in the 1820s had some related thinking near the same lines. [1] In 1845, Joule published a paper entitled "The Mechanical Equivalent of Heat", in which he specified a numerical value for the amount of mechanical work required to produce a unit of heat.
All reversible heat engines between two heat reservoirs are equally efficient with a Carnot engine operating between the same reservoirs. In his ideal model, the heat of caloric converted into work could be reinstated by reversing the motion of the cycle, a concept subsequently known as thermodynamic reversibility. Carnot, however, further ...
The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...