Search results
Results from the WOW.Com Content Network
Deoxygenation is a chemical reaction involving the removal of oxygen atoms from a molecule. The term also refers to the removal of molecular oxygen (O 2 ) from gases and solvents, a step in air-free technique and gas purifiers .
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
The collapse of the alkoxide results in the fragmentation producing the desired aldehyde (4), nitrogen gas, and an aryl sulfinate ion (5). The mechanism of the McFadyen–Stevens reaction Martin et al. have proposed a different mechanism involving an acyl nitrene .
The second step is the deoxygenation of the pinacolate, which yields the alkene, this second step exploits the oxophilicity of titanium. A proposed mechanism when TiCl 4 and Zn(Cu) are used for the coupling of benzophenone, as proposed in a reference. [3] Note that the mechanism may vary when different conditions are used.
The Barton–McCombie deoxygenation is an organic reaction in which a hydroxy functional group in an organic compound is replaced by a hydrogen to give an alkyl group. [1] [2] It is named after British chemists Sir Derek Harold Richard Barton and Stuart W. McCombie. The Barton-McCombie deoxygenation. This deoxygenation reaction is a radical ...
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
The Mozingo reduction, also known as Mozingo reaction or thioketal reduction, is a chemical reaction capable of fully reducing a ketone or aldehyde to the corresponding alkane via a dithioacetal. [1] [2] The reaction scheme is as follows: [3]
Aldehyde deformylating oxygenases are found in cyanobacteria as part of the alkane biosynthesis pathway. [2] Their substrates are medium- to long-chain aldehydes formed from acyl- ACP by acyl-ACP reductases ( EC 1.2.1.80 ), [ 2 ] commonly of 16 and 18 carbons, but potentially as short as 9 carbons and 10 carbons. [ 3 ]