Search results
Results from the WOW.Com Content Network
Differential phase shift keying (DPSK) is a common form of phase modulation that conveys data by changing the phase of the carrier wave. As mentioned for BPSK and QPSK there is an ambiguity of phase if the constellation is rotated by some effect in the communications channel through which the signal passes.
The common types of modulation that may be used with differential coding include phase-shift keying and quadrature amplitude modulation.
Amplitude and phase-shift keying (APSK) is a digital modulation scheme that conveys data by modulating both the amplitude and the phase of a carrier wave. In other words, it combines both amplitude-shift keying (ASK) and phase-shift keying (PSK).
The most fundamental digital modulation techniques are based on keying: PSK (phase-shift keying): a finite number of phases are used. FSK (frequency-shift keying): a finite number of frequencies are used. ASK (amplitude-shift keying): a finite number of amplitudes are used.
In digital modulation, minimum-shift keying (MSK) is a type of continuous-phase frequency-shift keying that was developed in the late 1950s by Collins Radio employees Melvin L. Doelz and Earl T. Heald. [1] Similar to OQPSK, MSK is encoded with bits alternating between quadrature components, with the Q component delayed by half the symbol period.
Each symbol is encoded as a different phase shift of the carrier sine wave: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°. A constellation diagram is a representation of a signal modulated by a digital modulation scheme such as quadrature amplitude modulation or phase-shift keying. [1]
An optical DPSK demodulator is a device that provides a method for converting an optical differential phase-shift keying (DPSK) signal to an intensity-keyed signal at the receiving end in fiber-optic communication networks. It is also known as delay line interferometer (DLI), or simply called DPSK demodulator.
A more practical scheme is differential binary phase-shift keying, in which the carrier remains at the same frequency, but can be in one of two phases. During each symbol, the phase either remains the same, encoding a 0, or jumps by 180°, encoding a 1. Again, only one bit of data (i.e., a 0 or 1) is transmitted by each symbol. This is an ...