enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Imperfect multicollinearity refers to a situation where the predictive variables have a nearly exact linear relationship. Contrary to popular belief, neither the Gauss–Markov theorem nor the more common maximum likelihood justification for ordinary least squares relies on any kind of correlation structure between dependent predictors [ 1 ...

  3. Coefficient of multiple correlation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_multiple...

    The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been ...

  4. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...

  5. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    The F-test is computed by dividing the explained variance between groups (e.g., medical recovery differences) by the unexplained variance within the groups. Thus, = If this value is larger than a critical value, we conclude that there is a significant difference between groups.

  6. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Lack of perfect multicollinearity in the predictors. For standard least squares estimation methods, the design matrix X must have full column rank p; otherwise perfect multicollinearity exists in the predictor variables, meaning a linear relationship exists between two or more predictor variables. This can be caused by accidentally duplicating ...

  8. Moderation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Moderation_(statistics)

    The intercept is the grand mean (the mean of all the conditions). The regression coefficient is the difference between the mean of one group and the mean of all the group means (e.g. the mean of group A minus the mean of all groups). This coding system is appropriate when the groups represent natural categories.

  9. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In statistics, collinearity refers to a linear relationship between two explanatory variables. Two variables are perfectly collinear if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1.