Search results
Results from the WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression , [ 1 ] semiparametric regression [ 1 ] and functional data analysis . [ 2 ]
Squared deviations from the mean (SDM) result from squaring deviations.In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data).
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means.
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
In probability theory and statistics, a conditional variance is the variance of a random variable given the value(s) of one or more other variables. Particularly in econometrics , the conditional variance is also known as the scedastic function or skedastic function . [ 1 ]
In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance.