Search results
Results from the WOW.Com Content Network
Since an electron has charge, it has a surrounding electric field; if that electron is moving relative to an observer, the observer will observe it to generate a magnetic field. Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law .
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
These iterative developments culminated in his 1906 publication "The End of Matter" [10] in which he notes that when applying the methodology of using an electric or magnetic field deviations to determine charge-to-mass ratios, one finds that the apparent mass added by charge makes up all of the apparent mass, thus the "real mass is equal to ...
Here the small corrections to the relativistic result g = 2 come from the quantum field theory calculations of the anomalous magnetic dipole moment. The electron g-factor is known to twelve decimal places by measuring the electron magnetic moment in a one-electron cyclotron: [3] = ().
In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...
One consequence is that an external magnetic field exerts a torque on the electron magnetic moment that depends on the orientation of this dipole with respect to the field. If the electron is visualized as a classical rigid body in which the mass and charge have identical distribution and motion that is rotating about an axis with angular ...
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]