enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The model fits well when the residuals (i.e., observed-expected) are close to 0, that is the closer the observed frequencies are to the expected frequencies the better the model fit. If the likelihood ratio chi-square statistic is non-significant, then the model fits well (i.e., calculated expected frequencies are close to observed frequencies).

  3. F-statistics - Wikipedia

    en.wikipedia.org/wiki/F-statistics

    A reformulation of the definition of would be the ratio of the average number of differences between pairs of chromosomes sampled within diploid individuals with the average number obtained when sampling chromosomes randomly from the population (excluding the grouping per individual). One can modify this definition and consider a grouping per ...

  4. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    E i = an expected count for bin i, asserted by the null hypothesis. The expected frequency is calculated by: = (() ()) where: F = the cumulative distribution function for the probability distribution being tested. Y u = the upper limit for bin i, Y l = the lower limit for bin i, and

  5. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].

  7. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    The general formula for G is = ⁡ (), where is the observed count in a cell, > is the expected count under the null hypothesis, denotes the natural logarithm, and the sum is taken over all non-empty cells.

  8. Empirical distribution function - Wikipedia

    en.wikipedia.org/.../Empirical_distribution_function

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  9. Frequentist inference - Wikipedia

    en.wikipedia.org/wiki/Frequentist_inference

    Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data.