Search results
Results from the WOW.Com Content Network
A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.
When calculating an allele frequency for a diploid species, remember that homozygous individuals have two copies of an allele, whereas heterozygotes have only one. In our example, each of the 42 pink-flowered heterozygotes has one copy of the a allele, and each of the 9 white-flowered homozygotes has two copies.
The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics:
E i = an expected count for bin i, asserted by the null hypothesis. The expected frequency is calculated by: = (() ()) where: F = the cumulative distribution function for the probability distribution being tested. Y u = the upper limit for bin i, Y l = the lower limit for bin i, and
Given a sample set, one can compute the studentized residuals and compare these to the expected frequency: points that fall more than 3 standard deviations from the norm are likely outliers (unless the sample size is significantly large, by which point one expects a sample this extreme), and if there are many points more than 3 standard ...
Pearson's chi-squared test is used to determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table. For contingency tables with smaller sample sizes, a Fisher's exact test is used instead.
The coefficient of coincidence is calculated by dividing the actual frequency of double recombinants by this expected frequency: [1] c.o.c. = actual double recombinant frequency / expected double recombinant frequency. Interference is then defined as follows: [1] interference = 1 − c.o.c.
The approximation to the chi-squared distribution breaks down if expected frequencies are too low. It will normally be acceptable so long as no more than 20% of the events have expected frequencies below 5. Where there is only 1 degree of freedom, the approximation is not reliable if expected frequencies are below 10.