Search results
Results from the WOW.Com Content Network
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer. For the rest of this article, we will assume the input to the divide-and-conquer algorithm is an real symmetric tridiagonal matrix . The algorithm can be modified for Hermitian matrices.
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
Quicksort is a type of divide-and-conquer algorithm for sorting an array, based on a partitioning routine; the details of this partitioning can vary somewhat, so that quicksort is really a family of closely related algorithms. Applied to a range of at least two elements, partitioning produces a division into two consecutive non empty sub-ranges ...
The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 3 ...
Merge sort parallelizes well due to the use of the divide-and-conquer method. Several different parallel variants of the algorithm have been developed over the years. Some parallel merge sort algorithms are strongly related to the sequential top-down merge algorithm while others have a different general structure and use the K-way merge method.
From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.
Divide and conquer, a.k.a. merge hull — O(n log n) Another O(n log n) algorithm, published in 1977 by Preparata and Hong. This algorithm is also applicable to the three dimensional case. Chan calls this "one of the best illustrations of the power of the divide-and-conquer paradigm". [2] Monotone chain, a.k.a. Andrew's algorithm — O(n log n)