Search results
Results from the WOW.Com Content Network
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.
For these latter reactions, two equivalents of the incoming group add to form an alcohol rather than a ketone or aldehyde. This occurs even if the equivalents of nucleophile are closely controlled. Overaddition of nucleophiles. The Weinreb–Nahm amide has since been adopted into regular use by organic chemists as a dependable method for the ...
A general acyl group (blue) in a ketone (top left), as an acylium cation (top centre), as an acyl radical (top right), an aldehyde (bottom left), ester (bottom centre) or amide (bottom right). (R 1, R 2 and R 3 stands for organyl substituent or hydrogen in the case of R 1)
The very facile reaction of Weinreb amides with organolithium and Grignard reagents results from the chelate stabilization in the tetrahedral adduct and, more importantly, the transition state leading to the adduct. The tetrahedral adducts are shown below. Weinreb ketone synthesis and tetrahedral intermediate stability
Because primary and secondary amines react with aldehydes and ketones, the most common variety of these aminocarbonyl compounds feature tertiary amines. Such compounds are produced by amination of α-haloketones and α-haloaldehydes. [1] Examples include cathinones, methadone, molindone, pimeclone, ferruginine, and tropinone.
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
Structure of an η 2-formaldehyde complex. Transition metal complexes of aldehydes and ketones describes coordination complexes with aldehyde (RCHO) and ketone (R 2 CO) ligands. Because aldehydes and ketones are common, the area is of fundamental interest. Some reactions that are useful in organic chemistry involve such complexes.
On the other hand, amides are much stronger bases than carboxylic acids, esters, aldehydes, and ketones (their conjugate acids' pK a s are between −6 and −10). The proton of a primary or secondary amide does not dissociate readily; its p K a is usually well above 15.