Search results
Results from the WOW.Com Content Network
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
The magnitude axis is in [Decibel] (dB). The phase axis is in either degrees or radians. The frequency axes are in a [logarithmic scale]. These are useful because for sinusoidal inputs, the output is the input multiplied by the value of the magnitude plot at the frequency and shifted by the value of the phase plot at the frequency.
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
Roll-off graph of higher-order low-pass filters showing various rates of roll-off. A higher order network can be constructed by cascading first-order sections together. If a unity gain buffer amplifier is placed between each section (or some other active topology is used) there is no interaction between the stages.
The gain and the delay for this filter are plotted in the graph on the left. There are no ripples in the gain curve in either the passband or the stopband. The log of the absolute value of the transfer function () is plotted in complex frequency space in the second graph on the right. The function is defined by the three poles in the left half ...
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
The coherence (sometimes called magnitude-squared coherence) between two signals x(t) and y(t) is a real-valued function that is defined as: [1] [2] = | | ()where G xy (f) is the Cross-spectral density between x and y, and G xx (f) and G yy (f) the auto spectral density of x and y respectively.
The Smith chart graphical equivalent of using the transmission-line equation is to normalise , to plot the resulting point on a Z Smith chart and to draw a circle through that point centred at the Smith chart centre. The path along the arc of the circle represents how the impedance changes whilst moving along the transmission line.