enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  3. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.

  4. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  5. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.

  6. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    Adding or subtracting two series term-by-term, Multiplying through by a scalar term-by-term, "Shifting" the series with no change in the sum, and; Increasing the sum by adding a new term to the series' head. These are all legal manipulations for sums of convergent series, but 1 − 1 + 1 − 1 + ⋯ is not a convergent series.

  7. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...

  8. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    A summation method that is linear and stable cannot sum the series 1 + 2 + 3 + ⋯ to any finite value. (Stable means that adding a term at the beginning of the series increases the sum by the value of the added term.) This can be seen as follows. If + + + =, then adding 0 to both sides gives

  9. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906).