enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    The bimolecular nucleophilic substitution (S N 2) is a type of reaction mechanism that is common in organic chemistry. In the S N 2 reaction, a strong nucleophile forms a new bond to an sp 3-hybridised carbon atom via a backside attack, all while the leaving group detaches from the reaction center in a concerted (i.e. simultaneous) fashion.

  3. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    After the initial bimolecular collision of A and B an energetically excited reaction intermediate is formed, then, it collides with a M body, in a second bimolecular reaction, transferring the excess energy to it. [7] The reaction can be explained as two consecutive reactions:

  4. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    Consider the following reaction for example: CO + NO 2 → CO 2 + NO. In this case, experiments have determined that this reaction takes place according to the rate law = []. This form suggests that the rate-determining step is a reaction between two molecules of NO 2. A possible mechanism for the overall reaction that explains the rate law is:

  5. 2-Bromobutane - Wikipedia

    en.wikipedia.org/wiki/2-Bromobutane

    2-Bromobutane is relatively stable, but is toxic and flammable. When treated with a strong base, it is prone to undergo an E2 reaction, which is a bimolecular elimination reaction, resulting in (predominantly) 2-butene, an alkene (double bond). 2-Bromobutane is an irritant, and harmful if ingested. It can irritate and burn skin and eyes.

  6. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    Nucleophilic substitutions can proceed by two different mechanisms, unimolecular nucleophilic substitution (S N 1) and bimolecular nucleophilic substitution (S N 2). The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through ...

  7. E1cB-elimination reaction - Wikipedia

    en.wikipedia.org/wiki/E1cB-elimination_reaction

    The E1cB mechanism is just one of three types of elimination reaction. The other two elimination reactions are E1 and E2 reactions. Although the mechanisms are similar, they vary in the timing of the deprotonation of the α-carbon and the loss of the leaving group. E1 stands for unimolecular elimination, and E2 stands for bimolecular elimination.

  8. Solvent effects - Wikipedia

    en.wikipedia.org/wiki/Solvent_effects

    The rate equation for S N 2 reactions are bimolecular being first order in Nucleophile and first order in Reagent. The determining factor when both S N 2 and S N 1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile's ...

  9. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    The two main mechanisms were the S N 1 reaction and the S N 2 reaction, where S stands for substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction. [4] In the S N 2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a concerted reaction).