enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  3. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...

  4. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The translation vectors define the nodes of Bravais lattice. The lengths of principal axes/edges, of unit cell and angles between them are lattice constants, also called lattice parameters or cell parameters. The symmetry properties of crystal are described by the concept of space groups. [1]

  6. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    Every crystal is a periodic structure which can be characterized by a Bravais lattice, and for each Bravais lattice we can determine the reciprocal lattice, which encapsulates the periodicity in a set of three reciprocal lattice vectors (b 1, b 2, b 3).

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    For example, in a crystal's k-space, there is an infinite set of points called the reciprocal lattice which are "equivalent" to k = 0 (this is analogous to aliasing). Likewise, the " first Brillouin zone " is a finite volume of k -space, such that every possible k is "equivalent" to exactly one point in this region.

  8. Zone axis - Wikipedia

    en.wikipedia.org/wiki/Zone_axis

    The translational invariance of a crystal lattice is described by a set of unit cell, direct lattice basis vectors (contravariant [1] or polar) called a, b, and c, or equivalently by the lattice parameters, i.e. the magnitudes of the vectors, called a, b and c, and the angles between them, called α (between b and c), β (between c and a), and γ (between a and b).

  9. Crystallographic database - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_database

    Since Steno's Law can be further generalized for a single crystal of any material to include the angles between either all identically indexed net planes (i.e. vectors of the reciprocal lattice, also known as 'potential reflections in diffraction experiments') or all identically indexed lattice directions (i.e. vectors of the direct lattice ...