enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above).

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space, or cokernel, of a matrix A consists of all column vectors x such that x T A = 0 T, where T denotes the transpose of a matrix. The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the

  4. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    where the zero and one entries of are treated as numerical, rather than logical as for simple graphs, values, explaining the difference in the results - for simple graphs, the symmetrized graph still needs to be simple with its symmetrized adjacency matrix having only logical, not numerical values, e.g., the logical sum is 1 v 1 = 1, while the ...

  5. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The second proof [6] looks at the homogeneous system =, where is a with rank, and shows explicitly that there exists a set of linearly independent solutions that span the null space of . While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain.

  6. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Such an ⁠ ⁠ belongs to ⁠ ⁠ 's null space and is sometimes called a (right) null vector of ⁠. ⁠ The vector ⁠ x {\displaystyle \mathbf {x} } ⁠ can be characterized as a right-singular vector corresponding to a singular value of ⁠ A {\displaystyle \mathbf {A} } ⁠ that is zero.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.

  8. Null space (matrix) - Wikipedia

    en.wikipedia.org/?title=Null_space_(matrix...

    This page was last edited on 30 September 2013, at 19:23 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    For example, if A is a multiple aI n of the identity matrix, then its minimal polynomial is X − a since the kernel of aI n − A = 0 is already the entire space; on the other hand its characteristic polynomial is (X − a) n (the only eigenvalue is a, and the degree of the characteristic polynomial is always equal to the dimension of the space).