Search results
Results from the WOW.Com Content Network
In such a theory, its speed would depend on its frequency, and the invariant speed c of special relativity would then be the upper limit of the speed of light in vacuum. [32] No variation of the speed of light with frequency has been observed in rigorous testing, putting stringent limits on the mass of the photon. [59]
The speed calculated for electromagnetic waves, which could be predicted from experiments on charges and currents, [note 4] matches the speed of light; indeed, light is one form of electromagnetic radiation (as are X-rays, radio waves, and others).
A vacuum can be viewed not as empty space but as the combination of all zero-point fields. In quantum field theory this combination of fields is called the vacuum state, its associated zero-point energy is called the vacuum energy and the average energy value is called the vacuum expectation value (VEV) also called its condensate.
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
The effects of electromagnetic radiation upon living cells, including those in humans, depends upon the radiation's power and frequency. For low-frequency radiation (radio waves to near ultraviolet) the best-understood effects are those due to radiation power alone, acting through heating when radiation is absorbed.
The speed of light in vacuum is defined to be exactly 299 792 458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum.
Vacuum energy has a number of consequences. In 1948, Dutch physicists Hendrik B. G. Casimir and Dirk Polder predicted the existence of a tiny attractive force between closely placed metal plates due to resonances in the vacuum energy in the space between them.
In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum. Thus, a more accurate description would refer to c 0 {\displaystyle c_{0}} rather than the speed of light per se.