enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galilean transformation - Wikipedia

    en.wikipedia.org/wiki/Galilean_transformation

    The notation below describes the relationship under the Galilean transformation between the coordinates (x, y, z, t) and (x′, y′, z′, t′) of a single arbitrary event, as measured in two coordinate systems S and S′, in uniform relative motion (velocity v) in their common x and x′ directions, with their spatial origins coinciding at ...

  3. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In this case, the first car is stationary and the second car is approaching from behind at a speed of v 2 − v 1 = 8 m/s. To catch up to the first car, it will take a time of ⁠ d / v 2 − v 1 ⁠ = ⁠ 200 / 8 ⁠ s, that is, 25 seconds, as before. Note how much easier the problem becomes by choosing a suitable frame of reference.

  4. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...

  5. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...

  6. Frame of reference - Wikipedia

    en.wikipedia.org/wiki/Frame_of_reference

    There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can include time as a coordinate, and can be used to describe motion. Thus, Lorentz transformations and Galilean transformations may be viewed as coordinate transformations.

  7. Galilei-covariant tensor formulation - Wikipedia

    en.wikipedia.org/wiki/Galilei-covariant_tensor...

    The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.

  8. Center-of-momentum frame - Wikipedia

    en.wikipedia.org/wiki/Center-of-momentum_frame

    The situation is analyzed using Galilean transformations and conservation of momentum (for generality, rather than kinetic energies alone), for two particles of mass m 1 and m 2, moving at initial velocities (before collision) u 1 and u 2 respectively. The transformations are applied to take the velocity of the frame from the velocity of each ...

  9. Galilean electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Galilean_electromagnetism

    According to Germain Rousseaux, [1] the existence of these two exclusive limits explains why electromagnetism has long been thought to be incompatible with Galilean transformations. However Galilean transformations applying in both cases (magnetic limit and electric limit) were known by engineers before the topic was discussed by Jean-Marc ...