Search results
Results from the WOW.Com Content Network
Another application of this theorem provides a geometrical proof of the AM–GM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [note 1
The inequalities then follow easily by the Pythagorean theorem. Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}
= (Geometric mean theorem; see Special Cases, inverse Pythagorean theorem) In a right triangle, the altitude from each acute angle coincides with a leg and intersects the opposite side at (has its foot at) the right-angled vertex, which is the orthocenter.
Mazur's torsion theorem (algebraic geometry) Mean value theorem ; Measurable Riemann mapping theorem (conformal mapping) Mellin inversion theorem (complex analysis) Menelaus's theorem ; Menger's theorem (graph theory) Mercer's theorem (functional analysis) Mermin–Wagner theorem ; Mertens's theorems (number theory)
A geometric construction of the quadratic mean and the Pythagorean means (of two numbers a and b). Harmonic mean denoted by H, geometric by G, arithmetic by A and quadratic mean (also known as root mean square) denoted by Q. Comparison of the arithmetic, geometric and harmonic means of a pair of numbers.
Notice that the a-mean as defined above only has the usual properties of a mean (e.g., if the mean of equal numbers is equal to them) if + + =. In the general case, one can consider instead [] / (+ +), which is called a Muirhead mean. [1] Examples